

Images courtesy of Ennead Architects

Jonathan Coan AE Senior Thesis April 10, 2012

Weill Cornell Medical Research Building New York, NY

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

- \bullet Building
- Location: 413 East 69th Street, New York, NY 10021 **Occupant:** Weill Cornell Medical College **Occupancy Type:** Laboratory/Research facility **Number of Stories**: Below Grade – 3 Above Grade – 18 + penthouse **Dates of Construction**: 2010 – 2014 **Overall Cost:** \$650 Million **Delivery Method:** Design-Bid-Build

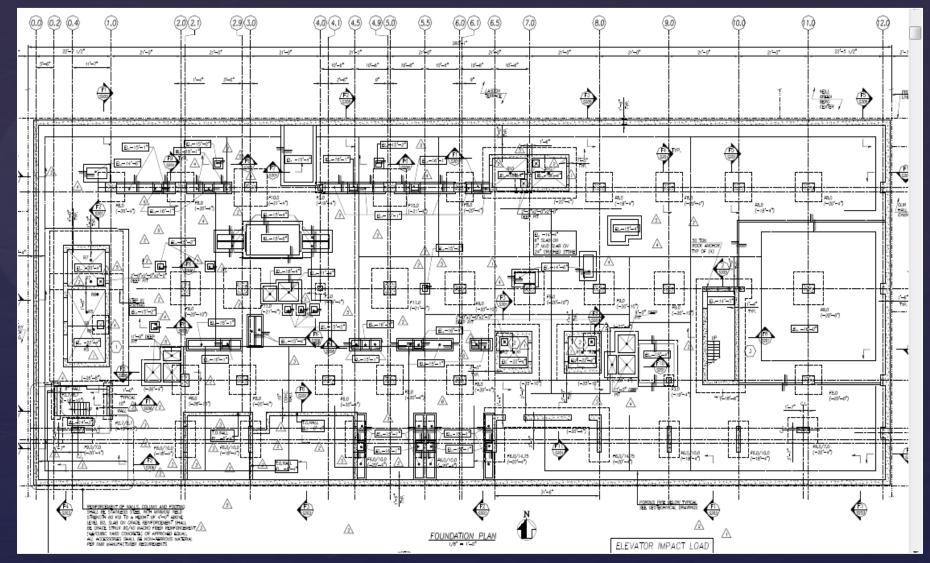
- \bullet • \bullet \bullet
- **Size:** 455,000 square feet

General Building Data

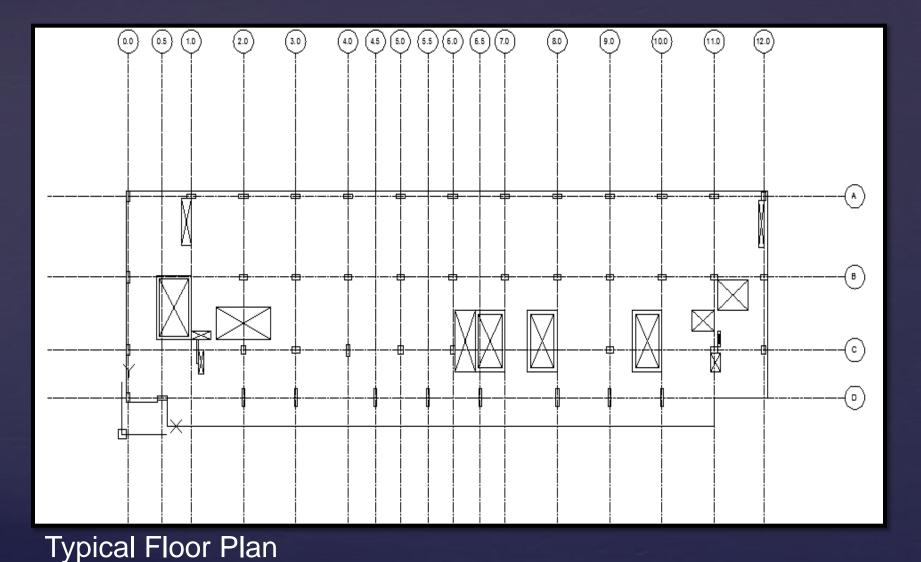
Project Team

Building Name: Weill Cornell Medical Research

- Architect: Ennead Architects
- Structural Engineer: Severud Associates
- Mechanical Engineer: Jaros Baum & Bolles
- Laboratory Consultant: Jacobs Consultancy GPR
- **Construction Manager:** Tishman Construction •


- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

- crushed stone
- \bullet
- \bullet


Existing Foundation

• Spread footings on undisturbed bedrock Slab on grade 6" resting on 3" mud slab on 24" of Water table uplift an issue (4) 50 ton rock anchors

Basement Floor Plan

- \bullet

Existing Floor System

Vibrations

2-Way Flat Plate Slab Typical thickness: 12.5" Cantilever in front, 9'-8" Slab cambered 5/8" for deflections

- Laboratories sensitive to vibrations \bullet
- Floors limited to 2000 micro-inches per second \bullet
- vibrationally

HSS members on alternate floors to tie slabs together

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

Structural Depth

- Redesign floor system \bullet
 - Eliminate camber
 - Minimize floor-to-floor heights
 - Satisfy deflection requirements
- Column Investigations \bullet
 - Change size of 14 x 72 columns
 - Remove Row B columns

Thesis Goals

Enclosure Breadths

- Redesign Brick Cavity Wall system
- Conduct heat transfer and moisture analysis for comparison of enclosure systems (Mechanical)
- Compare architectural features of each system (Architecture)

MAE Course Related Study

Information, methods, and tools from AE 542 (Building) Enclosure Science and Design) used for enclosure breadths

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

- 17th Floor
- 18th Floor

Other Parameters • $f'_{c} = 4000 \text{ psi}$

Structural Depth

Floors Used for Redesign • 3 - 16 structurally identical = Typical Floor

Level	Dead Load (psf)	Live Load (psf)
Typical Floor	27, 47	60, 150
17th Floor	97	150
18th Floor	107	400

Banded Beam System

- Uniform one-way slab with thickened portion called "band-beam"
- Span Conditions: \bullet
 - Typical Span of Typical Floor
 - End Span of Typical Floor
 - Higher Load Areas of Typical Floor
 - 17th Floor
 - 18th Floor
- Reinforcement: Grade 250 Seven-wire Strands

One-Way Prestressed Slab

- Pre-stress losses assumed to be 15%
- L/45 used for initial thickness

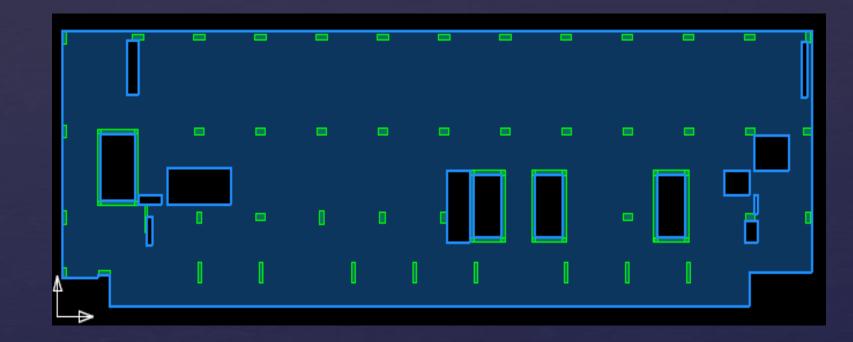
Location	Superimposed Dead Load (psf)	Live Load (psf)	Thickness (in)	Prestressing	Spacing (in)
Typical Span	27	60	8	18196"	17
Typical Floor (End Span)	27	60	8	18196"	15
Higher Load Areas	47	150	8	18196"	15
17th Floor	97	150	10	18196"	20
18th Floor	107	400	14	18196"	15.50

Band-Beams

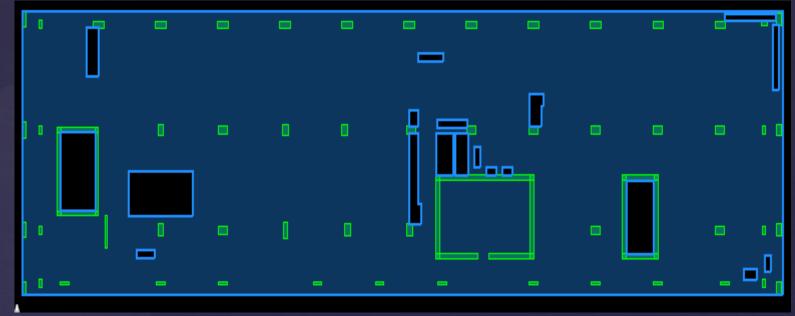
- Width: 6ft
- •

Banded Beam System

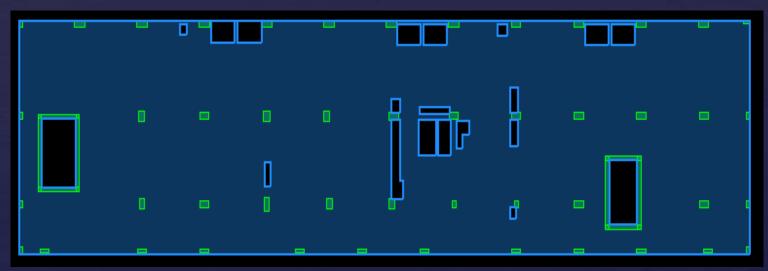
Bundles of (12) 3/8" strands


Location	Superimposed Dead Load (psf)	Live Load (psf)	Beam Height (in)	Reinforcement Depth (in)	A _p (in²)	Tendon Spacing (in O.C.)	M _u (kip-ft)	φM _n (kip -ft)
Typical	27	60	14	11.5	5.76	12	351	787
Edge Beam	27	60	14	11.5	2.88	24	232	393
Cantilever	27	60	14	11.5	5.76	12	294	787
Higher Load Areas	47	150	14	11.5	5.76	12	574	787
17th Floor	97	150	14	11.5	5.76	12	654	787
18th Floor	107	400	16	13.5	11.52	6	1214	1360

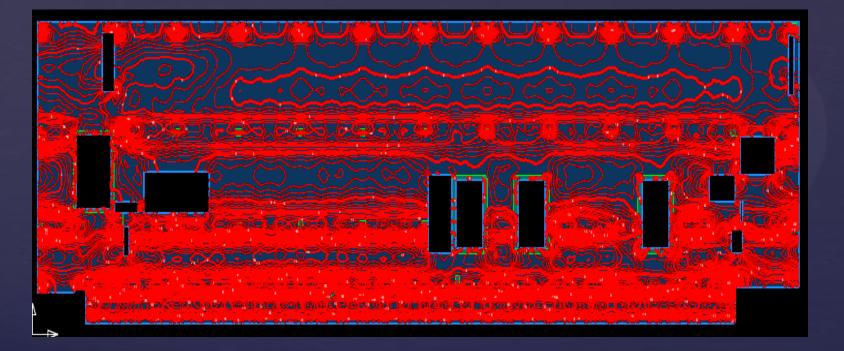
Two-Way PT Flat Plate Slab

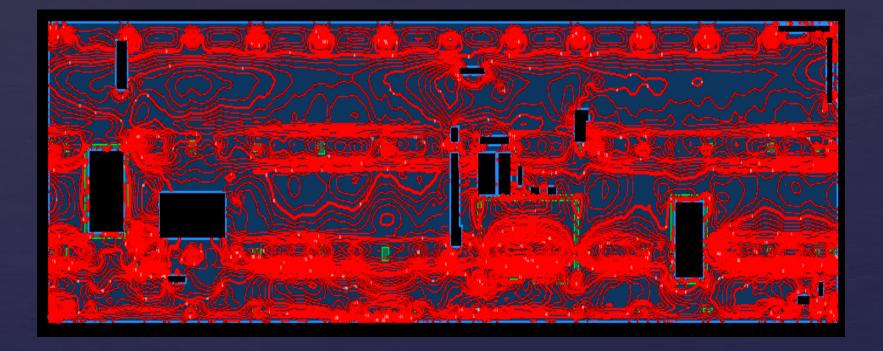

Process

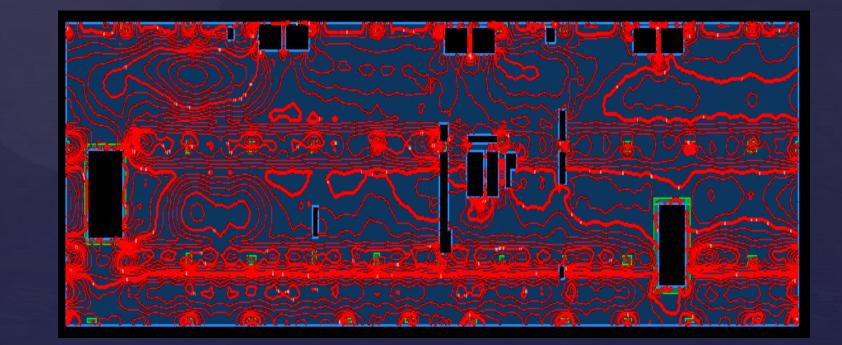
- RAM Concept
- 10" slab thickness
- Bundles of (12) 1/2" strands
- Minimum clear cover top and bottom: 1.5"
- Latitude and Longitude prestressing



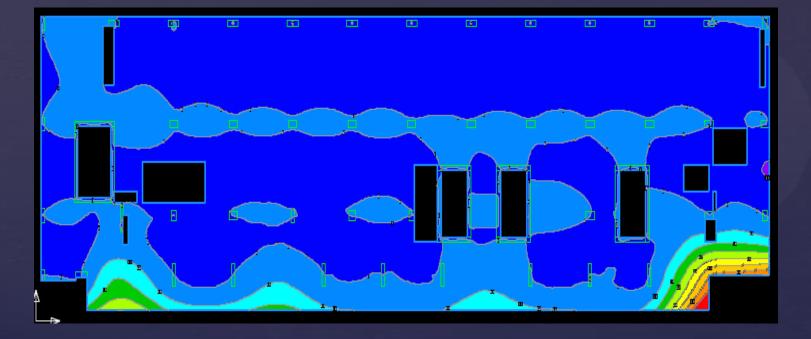
17th Floor Plan

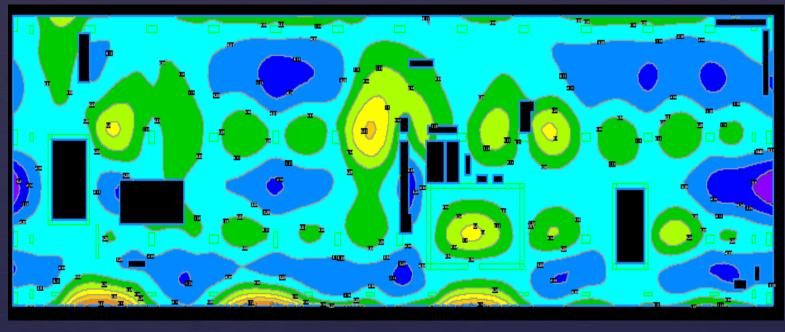



18th Floor Plan


Two-Way PT Flat Plate Slab Maximum Moments 17^{th} Floor: $M_{\text{max}} = 850$ kip-ft

Typical Floor: $M_{max} = 500$ kip-ft

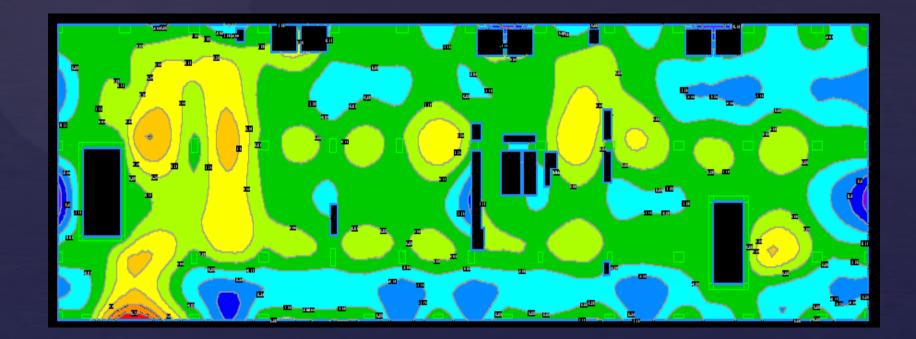


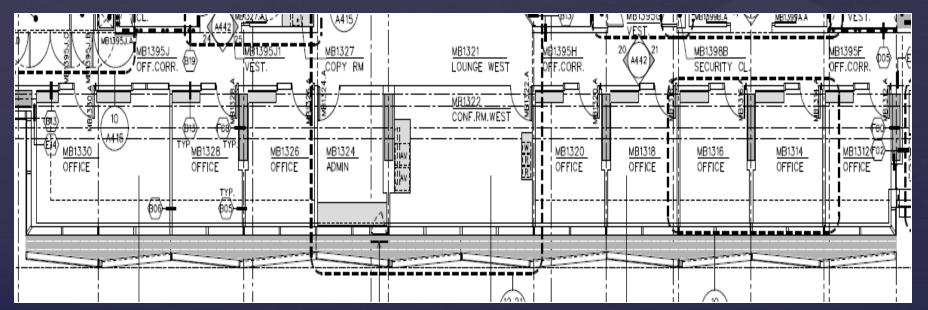


Two-Way PT Flat Plate Slab Deflections

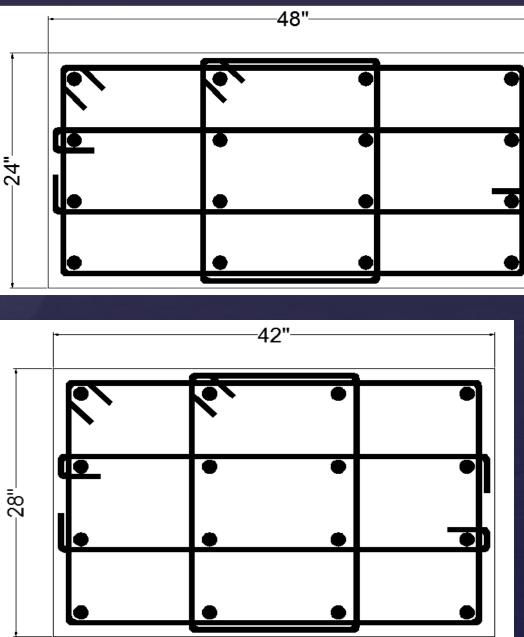
Typical Floor: $\Delta_{max} = .225$ in

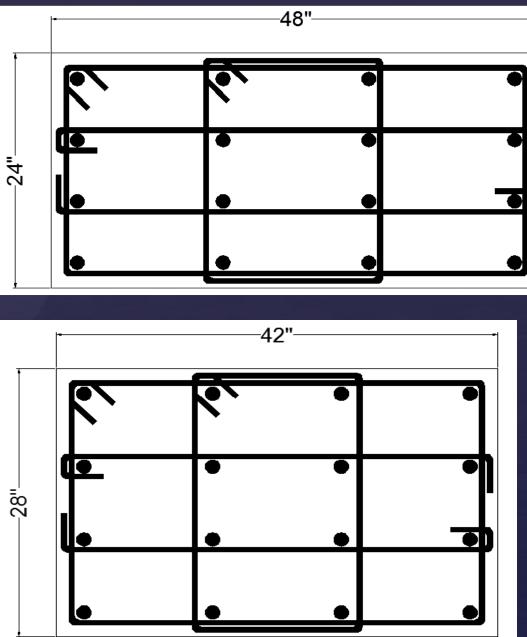



17th Floor: $\Delta_{max} = .24$ in



<u>14 x 72 Column</u>

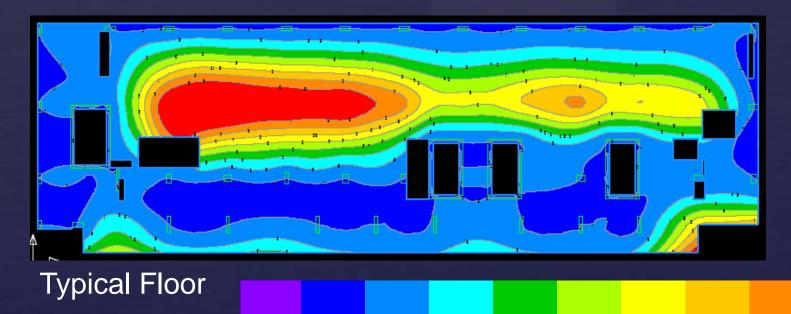

- Not just a column, not quite a wall
- Works well with floor plan layout



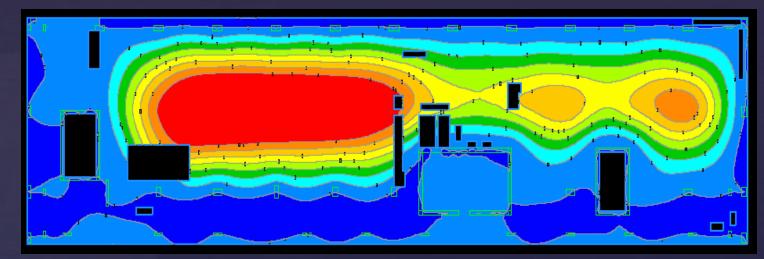
Partial Floor plan of cantilever

Column Investigations Removal of Column Row B New Column design:

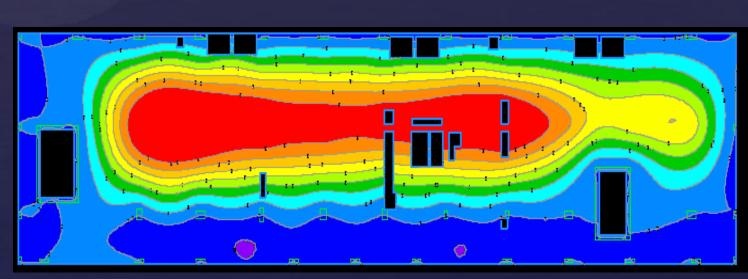
 Original Column A3 • 44 x 20, (16) # 9 bars • Pu = 1555 kips New Column A3 • 48 x 24, (16) #11 bars • Pu = 2518 kips, ΦPn = 3464 kips • Original Column C3 • 36 x 24, (16) #7 bars • Pu = 1520 kips New Column C3 • 42 x 28, (16) #11 bars • Pu = 2493 kips, ΦPn = 3517 kips



Effects on Floor Systems


Banded Beam

Level	Long. Spacing	Max Deflection (in)	Max Moment (kip-ft)
Typ Floor	3-4 ft	2	1500
17th Floor	4-6 ft	2.5	1700
18th Floor	3-6 ft	2.5	2000


Location	Superimposed Dead Load (psf)	Live Load (psf)	Beam Height (in)	Reinforcement Depth (in)	$A_p(in^2)$	Tendon Spacing (in O.C.)	M _u (kip-ft)	φM _n (kip -ft)
ГурісаІ	27	60	14	11.5	11.52	6	1275	1352
Higher Load Areas	47	150	16	13.5	31.10	6	2129	2052
17th Floor	97	150	18	15.5	20.74	6	2461	2705
18th Floor	107	400	24	21.5	20.74	6	4579	4650

Two-Way PT Flat Plate Slab

17th Floor

18th Floor

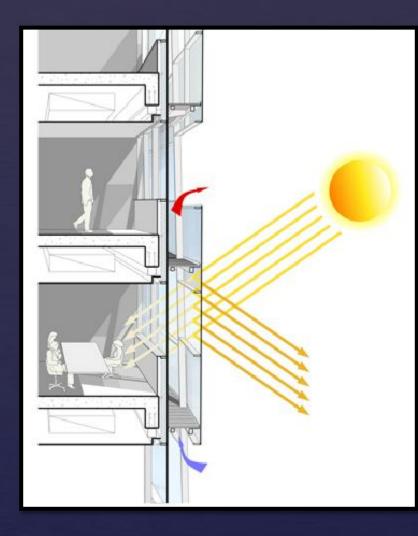
Structural Depth Summary

Floor System Redesign

- \bullet

Both systems meet design criteria Two-way PT Flat Plate better alternative • No camber necessary • Floor-to-floor heights reduced • Less concrete used

Column Investigations


- 14 x 72: Don't change
- Remove Row B: Not feasible

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

Enclosure Breadth

Glass Sunshade Curtain Wall

View: Front of the building looking up

Images courtesy of Ennead Architects

<u>Layers</u>

- 4" brick (Roman)
- 3" air space
- 3" rigid insulation (expanded)
- Air barrier
- Vapor barrier
- 8" concrete wall

Brick Cavity Wall

•	Wall Materials	R-Value (from H.A.M. Toolbox)	U-Value (1/R)
	4" Brick	0.64	1.563
	3" Air Space	0.98	1.020
	3" Rigid Insulation	11.86	0.084
	Building Paper (8mil)	0.12	8.333
	Poly Film (6mil)	0.12	8.333
	8" Concrete Wall	1.16	0.862
	Total R = ΣR =	14.88	
	Total U = $1/\Sigma R$ =	0.0672	
	Wall area =	30	m²
	Condition	Temperature (°C)	
	Outdoor (Summer)	34	
	Outdoor (Winter)	-11	
	Indoor (Summer)	24	
	Indoor (Winter)	21	
	ΔT _{summer}	10	
	ΔT_{winter}	-32	
	Q = A*U*ΔT	Q (w/m²*K)	
	Summer:	20.16	
	Winter:	-63.84	

Moisture Analysis Winter

Surface	RH (%)
Outside	80.00
1,2	80.93
2,3	68.94
3,4	12.60
4,5	12.42
5,6	27.41
Inside	25.00

Summer

Surface	RH (%)
Outside	57.00
1,2	56.36
2,3	58.44
3,4	90.92
4,5	91.30
5,6	52.20
Inside	50.00

<u>Layers</u>

- 1.25" EIFS
- 2" air space
- 2.5" rigid insulation (extruded)
- Air barrier
- Vapor barrier
- 6" CMU

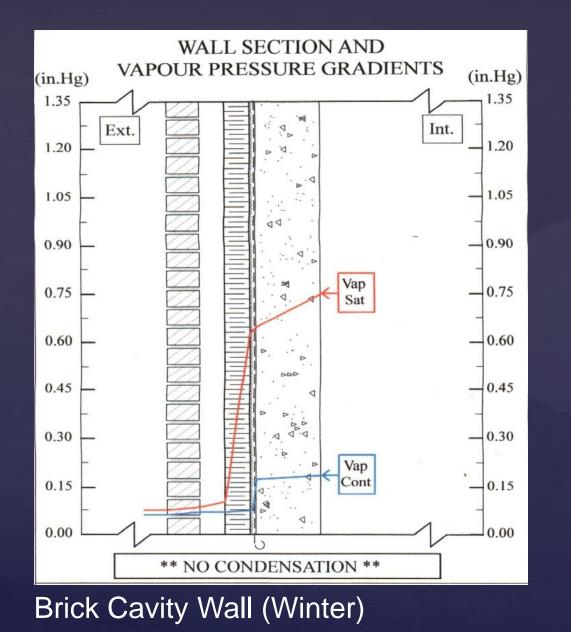
EIFS Wall

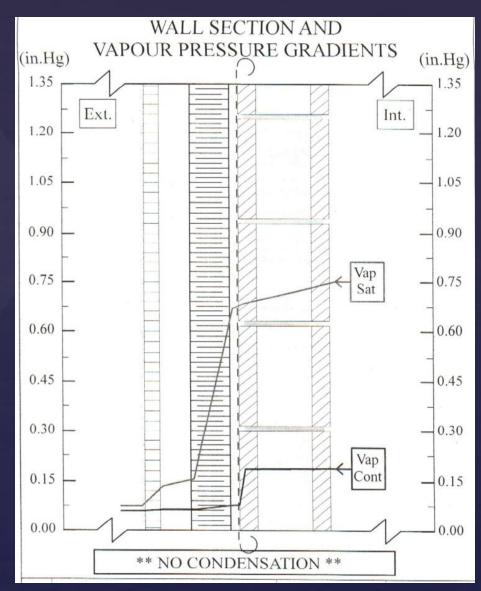
Wall Materials	R-Value (from H.A.M. Toolbox)	U-Value (1/R)
1-1/4" EIFS	4.25	0.235
2" Air Space	0.98	1.020
2-1/2" Rigid Insulation	12.84	0.078
Building Paper (8mil)	0.12	8.333
Poly Film (6mil)	0.12	8.333
6" Concrete Block	0.92	1.087
Total R = ΣR =	19.23	
Total U = 1/ΣR =	0.0520	
Wall area =	30	m ²
Condition	Temperature (°C)	
Outdoor (Summer)	34	
Outdoor (Winter)	-11	
Indoor (Summer)	24	
Indoor (Winter)	21	
ΔT_{summer}	10	
ΔT _{winter}	-32	
Q = A*U*ΔT	Q (w/m ² *K)	
Summer:	15.60	
Winter:	-49.40	

Moisture Analysis

Winter

	Surface	RH (%)
	Outside	80.00
	1,2	48.83
	2,3	43.37
	3,4	12.28
	4,5	12.15
	5,6	27.17
	Inside	25.00
Summer		
Gummer	Surface	RH (%)


Surface	RH (%)
Outside	57.00
1,2	62.30
2,3	64.09
3,4	92.77
4,5	93.06
5,6	53.15
Inside	50.00


Enclosure Breadth Summary

- Thinner, lighter system \bullet
- \bullet
- Decrease potential for condensation in the air space \bullet

Decrease heat loss and gain

EIFS Wall (Winter)

- Introduction
- Existing Structure
- Thesis Goals
- Structural Depth
- Enclosure Breadth
- Conclusion

Structural Depth

- Two floor systems examined
 - - Eliminate camber
 - Minimize floor-to-floor heights
 - Satisfy deflection requirements for cantilever
- Column Investigations \bullet
 - Change size of 14 x 72 columns
 - Remove Row B columns
 - Original column layout is best

Conclusions

- Two-Way PT Flat Plate slab deemed best
 - alternative to original design

Enclosure Breadths

- EIFS Wall system designed
- system
 - More insulating, less heat loss/gain
 - Better for moisture control

New design compared with original Brick Cavity Wall

Acknowledgements

Severud Associates Steve Reichwein Janice Clear Brian Falconer

Ennead Architects Paul Stanbridge

The Pennsylvania State University Dr. Thomas Boothby – Thesis Advisor Professors M. Kevin Parfitt and Robert Holland Dr. Linda Hanagan – Academic Advisor

I was also like to thank my friends and family, without whom I wouldn't be where I am or who I am today.

Questions and Comments

